Part Number Hot Search : 
HM62V1 SR1680 FR150 2SC4622 LT1016 25X40 S9025 LB161
Product Description
Full Text Search
 

To Download AT32UC3A0128-ALUT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Features
* High Performance, Low Power AVR(R)32 UC 32-Bit Microcontroller
- Compact Single-cycle RISC Instruction Set Including DSP Instruction Set - Read-Modify-Write Instructions and Atomic Bit Manipulation - Up to 66 MHz Clock Frequency with 1.24 DMIPS/MHz - Memory Protection Unit Multi-hierarchy Bus System - High-Performance Data Transfers on Separate Buses for Increased Performance - 15 Peripheral DMA Channels for Automatic Data Transfer Internal High-Speed Flash - 512K Bytes, 256K Bytes, 128K Bytes Versions - Single Cycle Access up to 30 MHz - Prefetch Buffer Optimizing Instruction Execution at Maximum Speed - 1ms Page Programming Time and 2ms Full-Chip Erase Time - 100,000 Write Cycles, 10-year Data Retention Capability - Flash Security Locks and User Defined Configuration Area Internal High-Speed SRAM, Single-Cycle Access at Full Speed - 64K Bytes (512KB and 256KB Flash), 32K Bytes (128KB Flash) External Memory Interface on AT32UC3A0 Derivatives - SDRAM / SRAM Compatible Memory Bus (16-bit Data and 24-bit Address Buses) Interrupt Controller - Autovectored Low Latency Interrupt Service with Programmable Priority System Functions - Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator - Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL) - Watchdog Timer, Real-Time Clock Timer Universal Serial Bus (USB) - Device 2.0 Full Speed and On-The-Go (OTG) Low Speed and Full Speed - Flexible End-Point Configuration and Management with Dedicated DMA Channels - On-chip Transceivers Including Pull-Ups Ethernet MAC 10/100 Mbps interface - 802.3 Ethernet Media Access Controller - Supports Media Independent Interface (MII) and Reduced MII (RMII) One Three-Channel 16-bit Timer/Counter (TC) - Three External Clock Inputs, PWM, Capture and Various Counting Capabilities One 7-Channel 16-bit Pulse Width Modulation Controller (PWM) Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART) - Independant Baudrate Generator, Support for IrDA and ISO7816 interfaces - Support for Hardware Handshaking, RS485 Interfaces and Modem Line Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals One Synchronous Serial Protocol Controller - Supports I2S and Generic Frame-Based Protocols One Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible One 8-channel 10-bit Analog-To-Digital Converter On-Chip Debug System (JTAG interface) - Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace 100-pin TQFP (69 GPIO pins), 144-pin LQFP (109 GPIO pins) 5V Input Tolerant I/Os Single 3.3V Power Supply
*
*
AVR(R)32 32-Bit Microcontroller AT32UC3A0512 AT32UC3A0256 AT32UC3A0128 AT32UC3A1512 AT32UC3A1256 AT32UC3A1128 Preliminary Summary
* * * *
*
*
* * *
* * * * * * * *
32058AS-AVR32-03/07
1. Description
The AT32UC3A is a complete System-On-Chip microcontroller based on the AVR32 UC RISC processor running at frequencies up to 66 MHz. AVR32 UC is a high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption, high code density and high performance. The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt controller for supporting modern operating systems and real-time operating systems. Higher computation capabilities are achievable using a rich set of DSP instructions. The AT32UC3A incorporates on-chip Flash and SRAM memories for secure and fast access. For applications requiring additional memory, an external memory interface is provided on AT32UC3A0 derivatives. The Peripheral Direct Memory Access controller enables data transfers between peripherals and memories without processor involvement. PDCA drastically reduces processing overhead when transferring continuous and large data streams between modules within the MCU. The PowerManager improves design flexibility and security: the on-chip Brown-Out Detector monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external oscillator sources, a Real-Time Clock and its associated timer keeps track of the time. The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be independently programmed to perform frequency measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation. The PWM modules provides seven independent channels with many configuration options including polarity, edge alignment and waveform non overlap control. One PWM channel can trigger ADC conversions for more accurate close loop control implementations. The AT32UC3A also features many communication interfaces for communication intensive applications. In addition to standard serial interfaces like UART, SPI or TWI, other interfaces like flexible Synchronous Serial Controller, USB and Ethernet MAC are available. The Synchronous Serial Controller provides easy access to serial communication protocols and audio standards like I2S. The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device like a USB Flash disk or a USB printer to be directly connected to the processor. The media-independent interface (MII) and reduced MII (RMII) 10/100 Ethernet MAC module provides on-chip solutions for network-connected devices. AT32UC3A integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control.
2
32058AS-AVR32-03/07
2. Configuration Summary
The table below lists all AT32UC3A memory and package configurations:
Device AT32UC3A0512 AT32UC3A1512 AT32UC3A0256 AT32UC3A1256 AT32UC3A0128 AT32UC3A1128
Flash 512 Kbytes 512 Kbytes 256 Kbytes 256 Kbytes 128 Kbytes 128 Kbytes
SRAM 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 32 Kbytes 32 Kbytes
Ext. Bus Interface yes no yes no yes no
Package 144 lead LQFP 100 lead TQFP 144 lead LQFP 100 lead TQFP 144 lead LQFP 100 lead TQFP
3
32058AS-AVR32-03/07
3. Blockdiagram
Figure 3-1. Blockdiagram
TCK TDO TDI TMS
JTAG INTERFACE
MCKO MDO[5..0] MSEO[1..0] EVTI_N EVTO_N
NEXUS CLASS 2+ OCD
UC CPU
MEMORY PROTECTION UNIT
INSTR INTERFACE
PBB
DATA INTERFACE FLASH CONTROLLER
64 KB SRAM
VBUS D+ DID VBOF
USB INTERFACE DMA
S M M
M
M
M
S S
512 KB FLASH
S ETHERNET MAC
PB
EXTERNAL BUS INTERFACE (SDRAM & STATIC MEMORY CONTROLLER)
COL, CRS, RXD[3..0], RX_CLK, RX_DV, RX_ER MDC, TXD[3..0], TX_CLK, TX_EN, TX_ER, SPEED MDIO
DMA
HIGH SPEED BUS MATRIX
DATA[15..0] ADDR[23..0] NCS[3..0] NRD NWAIT NWE0 NWE1 NWE3 RAS CAS SDA10 SDCK SDCKE SDCS1 SDWE
S
CONFIGURATION HSB
S
REGISTERS BUS
M
GENERAL PURPOSE IOs
HSB
HSB-PB BRIDGE B
HSB-PB BRIDGE A
PB PBA
PERIPHERAL DMA CONTROLLER
INTERRUPT CONTROLLER
EXTINT[7..0] KPS[7..0] NMI_N
EXTERNAL INTERRUPT CONTROLLER
USART1
GENERAL PURPOSE IOs
PA PB PC PX
RXD TXD CLK RTS, CTS DSR, DTR, DCD, RI RXD TXD CLK RTS, CTS
PDC
PA PB PC PX
REAL TIME COUNTER
USART0 USART2
PDC
RXD PDC
WATCHDOG TIMER 115 kHz RCOSC
XIN32 XOUT32 XIN0 XOUT0 XIN1 XOUT1
USART3
TXD CLK
POWER MANAGER CLOCK GENERATOR CLOCK CONTROLLER SLEEP CONTROLLER RESET CONTROLLER
SERIAL PERIPHERAL INTERFACE 0/1 SYNCHRONOUS SERIAL CONTROLLER
SCK MISO, MOSI NPCS0 NPCS[3..1]
TX_CLOCK, TX_FRAME_SYNC TX_DATA RX_CLOCK, RX_FRAME_SYNC RX_DATA
32 KHz OSC OSC0 OSC1 PLL0 PLL1
PDC
PDC
TWO-WIRE INTERFACE
PDC
SCL SDA
RESET_N
PDC
GCLK[3..0]
PULSE WIDTH MODULATION CONTROLLER ANALOG TO DIGITAL CONVERTER
PWM[6..0]
PDC
A[2..0] B[2..0] CLK[2..0]
TIMER/COUNTER
AD[7..0] ADVREF
4
32058AS-AVR32-03/07
3.1
3.1.1
Processor and architecture
AVR32 UC CPU * 32-bit load/store AVR32A RISC architecture.
15 general-purpose 32-bit registers. 32-bit Stack Pointer, Program Counter and Link Register reside in register file. Fully orthogonal instruction set. Privileged and unprivileged modes enabling efficient and secure Operating Systems. Innovative instruction set together with variable instruction length ensuring industry leading code density. - DSP extention with saturating arithmetic, and a wide variety of multiply instructions. * 3 stage pipeline allows one instruction per clock cycle for most instructions. - Byte, half-word, word and double word memory access. - Multiple interrupt priority levels. * MPU allows for operating systems with memory protection. - - - - -
3.1.2
Debug and Test system * IEEE1149.1 compliant JTAG and boundary scan * Direct memory access and programming capabilities through JTAG interface * Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+ * * * *
- Low-cost NanoTrace supported. Auxiliary port for high-speed trace information Hardware support for 6 Program and 2 data breakpoints Unlimited number of software breakpoints supported Advanced Program, Data, Ownership, and Watchpoint trace supported
3.1.3
Peripheral DMA Controller * Transfers from/to peripheral to/from any memory space without intervention of the processor. * Next Pointer Support, forbids strong real-time constraints on buffer management. * Fifteen channels
- - - - - Two for each USART Two for each Serial Synchronous Controller Two for each Serial Peripheral Interface One for each ADC Two for each TWI Interface
3.1.4
Bus system * High Speed Bus (HSB) matrix with 6 Masters and 6 Slaves handled
- Handles Requests from the CPU Data Fetch, CPU Instruction Fetch, PDCA, USBB, Ethernet Controller, CPU SAB, and to internal Flash, internal SRAM, Peripheral Bus A, Peripheral Bus B, EBI. - Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)
- Burst Breaking with Slot Cycle Limit - One Address Decoder Provided per Master
5
32058AS-AVR32-03/07
* Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus
Figure 3-1 gives an overview of the bus system. All modules connected to the same bus use the same clock, but the clock to each module can be individually shut off by the Power Manager. The figure identifies the number of master and slave interfaces of each module connected to the High Speed Bus, and which DMA controller is connected to which peripheral.
6
32058AS-AVR32-03/07
4. Signals Description
The following table gives details on the signal name classified by peripheral The signals are multiplexed with GPIO pins as described in "Peripheral Multiplexing on I/O lines" on page 25.
Table 4-1.
Signal Name
Signal Description List
Function Power Type Active Level Comments
VDDSYS VDDCORE VDDIO VDDANA VDDIN VDDOUT GNDANA GND
Power supply for PLL and ADC Core Power Supply I/O Power Supply Analog Power Supply Voltage Regulator Input Supply Voltage Regulator Output Analog Ground Ground
Power Power Power Power Power Power Output Ground Ground
1.65 to 1.95 V 1.65 to 1.95 V 3.0 to 3.6V 3.0 to 3.6V 3.0 to 3.6V 1.65 to 1.95 V
Clocks, Oscillators, and PLL's XIN0, XIN1, XIN32 XOUT0, XOUT1, XOUT32 Crystal 0, 1, 32 Input Crystal 0, 1, 32 Output JTAG TCK TDI TDO TMS Test Clock Test Data In Test Data Out Test Mode Select Input Input Output Input Auxiliary Port - AUX MCKO MDO0 - MDO5 MSEO0 - MSEO1 EVTI_N EVTO_N Trace Data Output Clock Trace Data Output Trace Frame Control Event In Event Out Output Output Output Output Output Low Low Analog Analog
7
32058AS-AVR32-03/07
Table 4-1.
Signal Name
Signal Description List
Function Type Power Manager - PM Active Level Comments
GCLK0 - GCLK3 RESET_N
Generic Clock Pins Reset Pin
Output Input Real Time Counter - RTC Low
RTC_CLOCK
RTC clock
Output Watchdog Timer - WDT
WDTEXT
External Watchdog Pin
Output External Interrupt Controller - EIC
EXTINT0 - EXTINT7 KPS0 - KPS7 NMI_N
External Interrupt Pins Keypad Scan Pins Non-Maskable Interrupt Pin
Input Output Input Ethernet MAC - MACB Low
COL CRS MDC MDIO RXD0 - RXD3 RX_CLK RX_DV RX_ER SPEED TXD0 - TXD3 TX_CLK TX_EN TX_ER
Collision Detect Carrier Sense and Data Valid Management Data Clock Management Data Input/Output Receive Data Receive Clock Receive Data Valid Receive Coding Error Speed Transmit Data Transmit Clock or Reference Clock Transmit Enable Transmit Coding Error
Input Input Output I/O Input Input Input Input
Output Output Output Output
External Bus Interface - HEBI - uC3015 Only ADDR0 - ADDR23 CAS Address Bus Column Signal Output Output Low
8
32058AS-AVR32-03/07
Table 4-1.
Signal Name
Signal Description List
Function Data Bus Chip Select Read Signal External Wait Signal Write Enable 0 Write Enable 1 Write Enable 3 Row Signal SDRAM Address 10 Line SDRAM Clock SDRAM Clock Enable SDRAM Chip Select SDRAM Write Enable Type I/O Output Output Input Output Output Output Output Output Output Output Output Output Low Low Low Low Low Low Low Low Low Active Level Comments
DATA0 - DATA15 NCS0 - NCS3 NRD NWAIT NWE0 NWE1 NWE3 RAS SDA10 SDCK SDCKE SDCS0-SDCS1 SDWE
General Purpose Input/Output 2 - GPIOA, GPIOB, GPIOC P0 - P31 P0 - P31 P0 - P5 P0 - P31 Parallel I/O Controller GPIOA Parallel I/O Controller GPIOB Parallel I/O Controller GPIOC Parallel I/O Controller GPIOX I/O I/O I/O I/O
Serial Peripheral Interface - SPI0, SPI1 MISO MOSI NPCS0 - NPCS3 SCK Master In Slave Out Master Out Slave In SPI Peripheral Chip Select Clock I/O I/O I/O Output Synchronous Serial Controller - SSC RX_CLOCK RX_DATA RX_FRAME_SYNC TX_CLOCK SSC Receive Clock SSC Receive Data SSC Receive Frame Sync SSC Transmit Clock I/O Input I/O I/O Low
9
32058AS-AVR32-03/07
Table 4-1.
Signal Name TX_DATA
Signal Description List
Function SSC Transmit Data SSC Transmit Frame Sync Type Output I/O Timer/Counter - TIMER Active Level Comments
TX_FRAME_SYNC
A0 A1 A2 B0 B1 B2 CLK0 CLK1 CLK2
Channel 0 Line A Channel 1 Line A Channel 2 Line A Channel 0 Line B Channel 1 Line B Channel 2 Line B Channel 0 External Clock Input Channel 1 External Clock Input Channel 2 External Clock Input
I/O I/O I/O I/O I/O I/O Input Input Input
Two-wire Interface - TWI SCL SDA Serial Clock Serial Data I/O I/O
Universal Synchronous Asynchronous Receiver Transmitter - USART0, USART1, USART2, USART3 CLK CTS DCD DSR DTR RI RTS RXD RXDN TXD TXDN Clock Clear To Send Data Carrier Detect Data Set Ready Data Terminal Ready Ring Indicator Request To Send Receive Data Inverted Receive Data Transmit Data Inverted Transmit Data Output Input Input Output Output Analog to Digital Converter - ADC Low Low I/O Input Only USART0, USART1 Only USART0 Only USART0 Only USART0 Only USART0 Only USART0, USART1
10
32058AS-AVR32-03/07
Table 4-1.
Signal Name AD0 - AD7
Signal Description List
Function Analog input pins Type Analog input Analog input 2.6 to 3.6V Active Level Comments
ADVREF
Analog positive reference voltage input
Pulse Width Modulator - PWM PWM0 - PWM6 PWM Output Pins Output Universal Serial Bus Device - USB DDM DDP USB Device Port Data USB Device Port Data + Analog Analog
11
32058AS-AVR32-03/07
5. Package and Pinout
The device pins are multiplexed with peripheral functions as described in "Peripheral Multiplexing on I/O lines" on page 25. Figure 5-1. TQFP100 Pinout
75 76
51 50
100 1 25
26
Table 5-1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TQFP100 Package Pinout
PB20 PB21 PB22 VDDIO GND PB23 PB24 PB25 PB26 PB27 VDDOUT VDDIN GND PB28 PB29 PB30 PB31 RESET_N PA00 PA01 GND VDDCORE 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 PA05 PA06 PA07 PA08 PA09 PA10 N/C PA11 VDDCORE GND PA12 PA13 VDDCORE PA14 PA15 PA16 PA17 PA18 PA19 PA20 VBUS VDDIO 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PA21 PA22 PA23 PA24 PA25 PA26 PA27 PA28 VDDANA ADVREF GNDANA VDDSYS PC00 PC01 PB00 PB01 VDDIO VDDIO GND PB02 PB03 PB04 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 PB08 PB09 PB10 VDDIO GND PB11 PB12 PA29 PA31 PC02 PC03 PB13 PB14 TMS TCK TDO TDI PC04 PC05 PB15 PB16 VDDCORE
12
32058AS-AVR32-03/07
Table 5-1.
23 24 25
TQFP100 Package Pinout
PA02 PA03 PA04 48 49 50 DM DP GND 73 74 75 PB05 PB06 PB07 98 99 100 PB17 PB18 PB19
Figure 5-2.
LQFP144 Pinout
108 109
73 72
144 1 36
37
Table 5-2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
VQFP144 Package Pinout
PX00 PX01 PB20 PX02 PB21 PB22 VDDIO GND PB23 PX03 PB24 PX04 PB25 PB26 PB27 VDDOUT VDDIN GND PB28 PB29 PB30 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 GND PX10 PA05 PX11 PA06 PX12 PA07 PX13 PA08 PX14 PA09 PA10 N/C PA11 VDDCORE GND PA12 PA13 VDDCORE PA14 PA15 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 PA21 PA22 PA23 PA24 PA25 PA26 PA27 PA28 VDDANA ADVREF GNDANA VDDSYS PC00 PC01 PX20 PB00 PX21 PB01 PX22 VDDIO VDDIO 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 GND PX30 PB08 PX31 PB09 PX32 PB10 VDDIO GND PX33 PB11 PX34 PB12 PA29 PA31 PC02 PC03 PB13 PB14 TMS TCK
13
32058AS-AVR32-03/07
Table 5-2.
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
VQFP144 Package Pinout
PB31 RESET_N PX05 PA00 PX06 PA01 GND VDDCORE PA02 PX07 PA03 PX08 PA04 PX09 VDDIO 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PA16 PX15 PA17 PX16 PA18 PX17 PA19 PX18 PA20 PX19 VBUS VDDIO DM DP GND 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 GND PX23 PB02 PX24 PB03 PX25 PB04 PX26 PB05 PX27 PB06 PX28 PB07 PX29 VDDIO 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 TDO TDI PC04 PC05 PB15 PX35 PB16 PX36 VDDCORE PB17 PX37 PB18 PX38 PB19 PX39
14
32058AS-AVR32-03/07
6. Power Considerations
6.1 Power Supplies
The AT32UC3A has several types of power supply pins: * * * * *
VDDIO: Powers I/O lines. Voltage is 3.3V nominal. VDDANA: Powers the ADC Voltage is 3.3V nominal. VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal. VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal. VDDSYS: Powers the PLL and ADC. Voltage is 1.8V nominal.
The ground pins GND are common to VDDCORE and VDDIO. The ground pin for VDDANA and VDDSYS is GNDANA. See "Electrical Characteristics" on page 33 for power consumption on the various supply pins.
6.2
Voltage Regulator
The AT32UC3A embeds a voltage regulator that converts from 3.3V to 1.8V with a load of up to 100 mA. The regulator takes its input voltage from VDDIN, and supplies the output voltage on VDDOUT. VDDOUT should be externally connected to the 1.8V domains to be powered. Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel: one external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible. One external 2.2 F (or 3.3 F) X7R capacitor should be connected between VDDOUT and GND. Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. The input decoupling capacitor should be placed close to the chip. For example, two capacitors can be used in parallel: 100 nF NPO and 4.7 F X7R.
15
32058AS-AVR32-03/07
7. I/O Line Considerations
7.1 JTAG pins
TMS, TDI and TCK have pull-up resistors. TDO is an output, driven at up to VDDIO, and has no pull-up resistor.
7.2
RESET_N pin
The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.
7.3
TWI pins
When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as PIO pins.
7.4
GPIO pins
All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the GPIO Controllers. After reset, I/O lines default as inputs with pull-up resistors disabled, except when indicated otherwise in the column "Reset State" of the GPIO Controller multiplexing tables.
16
32058AS-AVR32-03/07
8. Memories
8.1 Embedded Memories
* Internal High-Speed Flash
- 512 KBytes (AT32UC3A0512, AT32UC3A1512) - 256 KBytes (AT32UC3A0256, AT32UC3A1256) - 128 KBytes (AT32UC3A1128) - 0 Wait State Access at up to 30 MHz in Worst Case Conditions - 1 Wait State Access at up to 60 MHz in Worst Case Conditions - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding penalty of 1 wait state access - Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation to only 15% compared to 0 wait state operation - 10 000 Write Cycles, 10-year Data Retention Capability - 1 ms Page Programming Time, 2 ms Chip Erase Time - Sector Lock Capabilities, Bootloader Protection, Security Bit - 64 Fuses, 32 Of Which Are Preserved During Chip Erase - User Page For Data To Be Preserved During Chip Erase * Internal High-Speed SRAM, Single-cycle access at full speed - 64 KBytes (AT32UC3A0512, AT32UC3A0, AT32UC3A0256 & AT32UC3A1256) - 32KBytes (AT32UC3A1128)
8.2
Physical Memory Map
The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space is mapped as follows:
Table 8-1.
Start Address 0x0000_0000 0x8000_0000 0xC000_0000 0xC800_0000 0xCC00_0000 0xD000_0000 0xE000_0000 0xFFFE_0000 0xFFFF_0000
AT32UC3A Physical Memory Map
Size
AT32UC3A0512 AT32UC3A1512 AT32UC3A0256 AT32UC3A1256 AT32UC3A1128
Device 64 Kbyte 512 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 256 Kbyte 16 Mbyte 16 Mbyte 16 Mbyte 128 Mbyte 64 Kbyte 64 Kbyte 64 kByte 64 Kbyte 256 Kbyte 64 Kbyte 64 Kbyte 64 kByte 32 Kbyte 128 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte Embedded SRAM Embedded Flash EBI SRAM CS0 EBI SRAM CS2 EBI SRAM CS3 EBI SRAM/SDRAM CS1 USB Configuration HSB-PB Bridge A HSB-PB Bridge B
64 Kbyte 512 Kbyte 16 Mbyte 16 Mbyte 16 Mbyte 128 Mbyte 64 Kbyte 64 Kbyte 64 Kbyte
Accesses to unused areas returns an error result to the master requesting such an access. The bus matrix has the several masters and slaves. Each master has its own bus and its own decoder, thus allowing a different memory mapping per master. The master number in the table
17
32058AS-AVR32-03/07
below can be used to index the HMATRIX control registers. For example, MCFG0 is associated with the CPU Data master interface. Table 8-2.
Master 0 Master 1 Master 2 Master 3 Master 4 Master 5
High Speed Bus masters
CPU Data CPU Instruction CPU SAB PDCA MACB DMA USBB DMA
Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is associated with the Internal SRAM Slave Interface. Table 8-3.
Slave 0 Slave 1 Slave 2 Slave 3 Slave 4 Slave 5
High Speed Bus slaves
Internal Flash HSB-PB Bridge 0 HSB-PB Bridge 1 Internal SRAM Slave USBB Slave EBI
18
32058AS-AVR32-03/07
9. Peripherals
9.1 Peripheral address map
Peripheral Address Mapping
Address Peripheral Name Bus
Table 9-1.
0xE0000000
USBB
USBB Slave Interface - USBB
HSB
0xFFFE0000
USBB
USBB Configuration Interface - USBB
PBB
0xFFFE1000
HMATRIX
HMATRIX Configuration Interface - HMATRIX
PBB
0xFFFE1400
FLASHC
Flash Controller - FLASHC
PBB
0xFFFE1800
MACB
MACB Configuration Interface - MACB Static Memory Controller Configuration Interface SMC SDRAM Controller Configuration Interface SDRAMC Peripheral DMA Interface - PDCA
PBB
0xFFFE1C00
SMC
PBB
0xFFFE2000
SDRAMC
PBB
0xFFFF0000
PDCA
PBA
0xFFFF0800
INTC
Interrupt Controller Interface - INTC
PBA
0xFFFF0C00
PM
Power Manager - PM
PBA
0xFFFF0D00
RTC
Real Time Clock - RTC
PBA
0xFFFF0D30
WDT
WatchDog Timer - WDT
PBA
0xFFFF0D80
EIC
External Interrupt Controller - EIC
PBA
0xFFFF1000
GPIO
General Purpose IO Controller - GPIO Universal Synchronous Asynchronous Receiver Transmitter - USART0 Universal Synchronous Asynchronous Receiver Transmitter - USART1
PBA
0xFFFF1400
USART0
PBA
0xFFFF1800
USART1
PBA
19
32058AS-AVR32-03/07
Table 9-1.
Peripheral Address Mapping (Continued)
Address Peripheral Name Bus
0xFFFF1C00
USART2
Universal Synchronous Asynchronous Receiver Transmitter - USART2 Universal Synchronous Asynchronous Receiver Transmitter - USART3 Serial Peripheral Interface - SPI0
PBA
0xFFFF2000
USART3
PBA
0xFFFF2400
SPI0
PBA
0xFFFF2800
SPI1
Serial Peripheral Interface - SPI1
PBA
0xFFFF2C00
TWI
Two Wire Interface - TWI
PBA
0xFFFF3000
PWM
Pulse Width Modulation Controller - PWM
PBA
0xFFFF3400
SSC
Synchronous Serial Controller - SSC
PBA
0xFFFF3800
TC
Timer/Counter - TC
PBA
0xFFFF3C00
ADC
Analog To Digital Converter - ADC
PBA
9.2
Interrupt Request Signal Map
The various modules may output Interrupt request signals. These signals are routed to the Interrupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64 groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt signals in the same group share the same autovector address and priority level. Refer to the documentation for the individual submodules for a description of the semantic of the different interrupt requests. The interrupt request signals are connected to the INTC as follows. Table 9-2.
Group 0
Interrupt Request Signal Map
Line 0 Module Peripheral DMA Controller Signal PDCA 16
20
32058AS-AVR32-03/07
Table 9-2.
Interrupt Request Signal Map
0 1 2 3 4 External Interrupt Controller External Interrupt Controller External Interrupt Controller External Interrupt Controller External Interrupt Controller External Interrupt Controller External Interrupt Controller External Interrupt Controller Real Time Counter Power Manager General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller General Purpose Input/Output Controller EIC 0 EIC 1 EIC 2 EIC 3 EIC 4 EIC 5 EIC 6 EIC 7 RTC PM GPIO 0 GPIO 1 GPIO 2 GPIO 3 GPIO 4 GPIO 5 GPIO 6 GPIO 7 GPIO 8 GPIO 9 GPIO 10 GPIO 11 GPIO 12 GPIO 13
1 5 6 7 8 9 0 1 2 3 4 5 6 2 7 8 9 10 11 12 13
21
32058AS-AVR32-03/07
Table 9-2.
Interrupt Request Signal Map
0 1 2 3 4 5 6 Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Peripheral DMA Controller Flash Controller Universal Synchronous Asynchronous Receiver Transmitter Universal Synchronous Asynchronous Receiver Transmitter Universal Synchronous Asynchronous Receiver Transmitter Universal Synchronous Asynchronous Receiver Transmitter Serial Peripheral Interface Serial Peripheral Interface Two-wire Interface Pulse Width Modulation Controller Synchronous Serial Controller Timer/Counter Timer/Counter Timer/Counter Analog to Digital Converter Ethernet MAC USB Interface SDRAM Controller PDCA 0 PDCA 1 PDCA 2 PDCA 3 PDCA 4 PDCA 5 PDCA 6 PDCA 7 PDCA 8 PDCA 9 PDCA 10 PDCA 11 PDCA 12 PDCA 13 PDCA 14 FLASHC USART0 USART1 USART2 USART3 SPI0 SPI1 TWI PWM SSC TC0 TC1 TC2 ADC MACB USBB SDRAMC
3
7 8 9 10 11 12 13 14
4 5 6 7 8 9 10 11 12 13
0 0 0 0 0 0 0 0 0 0 0
14
1 2
15 16 17 18
0 0 0 0
22
32058AS-AVR32-03/07
9.3
9.3.1
Clock Connections
Timer/Counters Each Timer/Counter channel can independently select an internal or external clock source for its counter: Table 9-3.
Source Internal
Timer/Counter clock connections
Name TIMER_CLOCK1 TIMER_CLOCK2 TIMER_CLOCK3 TIMER_CLOCK4 TIMER_CLOCK5 Connection clk_slow clk_pba / 4 clk_pba / 8 clk_pba / 16 clk_pba / 32 See Section 9.6
External
XC0 XC1 XC2
9.3.2
USARTs Each USART can be connected to an internally divided clock: Table 9-4.
USART 0 1 2 3
USART clock connections
Source Internal Name CLK_DIV Connection clk_pba / 8
9.3.3
SPIs Each SPI can be connected to an internally divided clock: Table 9-5.
SPI 0 1
SPI clock connections
Source Internal Name CLK_DIV Connection clk_pba / 32
9.4
Nexus OCD AUX port connections
If the OCD trace system is enabled, the trace system will take control over a number of pins, irrespectively of the PIO configuration. Two different OCD trace pin mappings are possible,
23
32058AS-AVR32-03/07
depending on the configuration of the OCD AXS register. For details, see the AVR32 UCTechnical Reference Manual. Table 9-6.
Pin EVTI_N MDO[5] MDO[4] MDO[3] MDO[2] MDO[1] MDO[0] EVTO_N MCKO MSEO[1] MSEO[0]
Nexus OCD AUX port connections
AXS=0 PB19 PB16 PB14 PB13 PB12 PB11 PB10 PB20 PB21 PB04 PB17 AXS=1 PA08 PA27 PA26 PA25 PA24 PA23 PA22 PB20 PA21 PA07 PA28
9.5
DMA handshake signals
The PDMA and the peripheral modules communicate through a set of handshake signals. The following table defines the valid settings for the Peripheral Identifier (PID) in the PDMA Peripheral Select Register (PSR).
Table 9-7.
PID Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13
PDMA Handshake Signals
Peripheral module & direction ADC SSC - RX USART0 - RX USART1 - RX USART2 - RX USART3 - RX TWI - RX SPI0 - RX SPI1 - RX SSC - TX USART0 - TX USART1 - TX USART2 - TX USART3 - TX
24
32058AS-AVR32-03/07
Table 9-7.
PID Value 14 15 16
PDMA Handshake Signals
Peripheral module & direction TWI - TX SPI0 - TX SPI1 - TX
9.6
Peripheral Multiplexing on I/O lines
Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table define how the I/O lines on the peripherals A, B and C are multiplexed by the GPIO.
Table 9-8.
TQFP100 19 20 23 24 25 26 27 28 29 30 31 33 36 37 39 40 41 42 43 44 45 51 52 53 54 55 56
GPIO Controller Function Multiplexing
VQFP144 25 27 30 32 34 39 41 43 45 47 48 50 53 54 56 57 58 60 62 64 66 73 74 75 76 77 78 PIN PA00 PA01 PA02 PA03 PA04 PA05 PA06 PA07 PA08 PA09 PA10 PA11 PA12 PA13 PA14 PA15 PA16 PA17 PA18 PA19 PA20 PA21 PA22 PA23 PA24 PA25 PA26 GPIO Pin GPIO 0 GPIO 1 GPIO 2 GPIO 3 GPIO 4 GPIO 5 GPIO 6 GPIO 7 GPIO 8 GPIO 9 GPIO 10 GPIO 11 GPIO 12 GPIO 13 GPIO 14 GPIO 15 GPIO 16 GPIO 17 GPIO 18 GPIO 19 GPIO 20 GPIO 21 GPIO 22 GPIO 23 GPIO 24 GPIO 25 GPIO 26 Function A USART0 - RXD USART0 - TXD USART0 - CLK USART0 - RTS USART0 - CTS USART1 - RXD USART1 - TXD USART1 - CLK USART1 - RTS USART1 - CTS SPI0 - NPCS[0] SPI0 - MISO SPI0 - MOSI SPI0 - SCK SSC TX_FRAME_SYNC SSC - TX_CLOCK SSC - TX_DATA SSC - RX_DATA SSC - RX_CLOCK SSC RX_FRAME_SYNC NMI ADC - AD[0] ADC - AD[1] ADC - AD[2] ADC - AD[3] ADC - AD[4] ADC - AD[5] SPI1 - NPCS[0] SPI1 - SCK SPI1 - MOSI SPI1 - MISO SPI1 - NPCS[1] SPI1 - NPCS[2] SPI1 - NPCS[3] EIC - EXTINT[0] EIC - EXTINT[1] EIC - EXTINT[2] EIC - EXTINT[3] EIC - SCAN[0] EIC - SCAN[1] EBI - NCS[0] EBI - ADDR[20] EBI - NCS[0] EBI - ADDR[20] EBI - ADDR[21] EBI - ADDR[22] Function B TC - CLK0 TC - CLK1 TC - CLK2 EIC - EXTINT[4] EIC - EXTINT[5] PWM - PWM[4] PWM - PWM[5] PM - GCLK[0] SPI0 - NPCS[1] SPI0 - NPCS[2] EIC - EXTINT[6] USBB - USB_ID USBB - USB_VBOF SPI0 - NPCS[3] EIC - EXTINT[7] Function C
25
32058AS-AVR32-03/07
Table 9-8.
57 58 83 84 65 66 70 71 72 73 74 75 76 77 78 81 82 87 88 95 96 98 99 100 1 2 3 6 7 8 9 10 14 15 16 17 63 64 85
GPIO Controller Function Multiplexing
79 80 122 123 88 90 96 98 100 102 104 106 111 113 115 119 121 126 127 134 136 139 141 143 3 5 6 9 11 13 14 15 19 20 21 22 85 86 124 PA27 PA28 PA29 PA30 PB00 PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB11 PB12 PB13 PB14 PB15 PB16 PB17 PB18 PB19 PB20 PB21 PB22 PB23 PB24 PB25 PB26 PB27 PB28 PB29 PB30 PB31 PC00 PC01 PC02 GPIO 27 GPIO 28 GPIO 29 GPIO 30 GPIO 32 GPIO 33 GPIO 34 GPIO 35 GPIO 36 GPIO 37 GPIO 38 GPIO 39 GPIO 40 GPIO 41 GPIO 42 GPIO 43 GPIO 44 GPIO 45 GPIO 46 GPIO 47 GPIO 48 GPIO 49 GPIO 50 GPIO 51 GPIO 52 GPIO 53 GPIO 54 GPIO 55 GPIO 56 GPIO 57 GPIO 58 GPIO 59 GPIO 60 GPIO 61 GPIO 62 GPIO 63 GPIO 64 GPIO 65 GPIO 66 ADC - AD[6] ADC - AD[7] TWI - SDA TWI - SCL MACB - TX_CLK MACB - TX_EN MACB - TXD[0] MACB - TXD[1] MACB - CRS MACB - RXD[0] MACB - RXD[1] MACB - RX_ER MACB - MDC MACB - MDIO MACB - TXD[2] MACB - TXD[3] MACB - TX_ER MACB - RXD[2] MACB - RXD[3] MACB - RX_DV MACB - COL MACB - RX_CLK MACB - SPEED PWM - PWM[0] PWM - PWM[1] PWM - PWM[2] PWM - PWM[3] TC - A0 TC - B0 TC - A1 TC - B1 TC - A2 TC - B2 USART2 - RXD USART2 - TXD USART2 - CLK USBB - USB_ID USBB - USB_VBOF ADC - TRIGGER PM - GCLK[0] PM - GCLK[1] PM - GCLK[2] PM - GCLK[3] USART1 - DCD USART1 - DSR USART1 - DTR USART1 - RI PWM - PWM[4] PWM - PWM[5] PM - GCLK[1] PM - GCLK[2] PM - GCLK[3] EBI - NCS[2] EBI - SDCS EBI - NWAIT EBI - SDA10 EBI - ADDR[23] PWM - PWM[6] EIC - SCAN[4] EIC - SCAN[5] EIC - SCAN[6] EIC - SCAN[7] USART3 - RXD USART3 - TXD TC - CLK0 TC - CLK1 TC - CLK2 EBI - SDCK EBI - SDCKE EBI - RAS EBI - CAS EBI - SDWE USART3 - CLK EBI - NCS[3] EIC - SCAN[2] EIC - SCAN[3] USART2 - RTS USART2 - CTS USART2 - RTS USART2 - CTS EBI - ADDR[21] EBI - ADDR[22]
26
32058AS-AVR32-03/07
Table 9-8.
86 93 94
GPIO Controller Function Multiplexing
125 132 133 1 2 4 10 12 24 26 31 33 35 38 40 42 44 46 59 61 63 65 67 87 89 91 95 97 99 101 103 105 107 110 112 114 118 120 135 PC03 PC04 PC05 PX00 PX01 PX02 PX03 PX04 PX05 PX06 PX07 PX08 PX09 PX10 PX11 PX12 PX13 PX14 PX15 PX16 PX17 PX18 PX19 PX20 PX21 PX22 PX23 PX24 PX25 PX26 PX27 PX28 PX29 PX30 PX31 PX32 PX33 PX34 PX35 GPIO 67 GPIO 68 GPIO 69 GPIO 100 GPIO 99 GPIO 98 GPIO 97 GPIO 96 GPIO 95 GPIO 94 GPIO 93 GPIO 92 GPIO 91 GPIO 90 GPIO 109 GPIO 108 GPIO 107 GPIO 106 GPIO 89 GPIO 88 GPIO 87 GPIO 86 GPIO 85 GPIO 84 GPIO 83 GPIO 82 GPIO 81 GPIO 80 GPIO 79 GPIO 78 GPIO 77 GPIO 76 GPIO 75 GPIO 74 GPIO 73 GPIO 72 GPIO 71 GPIO 70 GPIO 105 EBI - DATA[10] EBI - DATA[9] EBI - DATA[8] EBI - DATA[7] EBI - DATA[6] EBI - DATA[5] EBI - DATA[4] EBI - DATA[3] EBI - DATA[2] EBI - DATA[1] EBI - DATA[0] EBI - NWE1 EBI - NWE0 EBI - NRD EBI - NCS[1] EBI - ADDR[19] EBI - ADDR[18] EBI - ADDR[17] EBI - ADDR[16] EBI - ADDR[15] EBI - ADDR[14] EBI - ADDR[13] EBI - ADDR[12] EBI - ADDR[11] EBI - ADDR[10] EBI - ADDR[9] EBI - ADDR[8] EBI - ADDR[7] EBI - ADDR[6] EBI - ADDR[5] EBI - ADDR[4] EBI - ADDR[3] EBI - ADDR[2] EBI - ADDR[1] EBI - ADDR[0] EBI - DATA[15]
27
32058AS-AVR32-03/07
Table 9-8.
GPIO Controller Function Multiplexing
137 140 142 144 PX36 PX37 PX38 PX39 GPIO 104 GPIO 103 GPIO 102 GPIO 101 EBI - DATA[14] EBI - DATA[13] EBI - DATA[12] EBI - DATA[11]
9.7
Oscillator Pinout
The oscillators are not mapped to the normal A,B or C functions and their muxings are controlled by registers in the Power Manager (PM). Please refer to the power manager chapter for more information about this. Table 9-9. Oscillator pinout
VQFP144 pin 124 132 85 125 133 86 Pad PC02 PC04 PC00 PC03 PC05 PC01 Oscillator pin xin0 xin1 xin32 xout0 xout1 xout32
TQFP100 pin 85 93 63 86 94 64
9.8
9.8.1
Peripheral overview
External Bus Interface * Optimized for Application Memory Space support * Integrates Two External Memory Controllers:
- Static Memory Controller - SDRAM Controller * Optimized External Bus: - 16-bit Data Bus - 24-bit Address Bus, Up to 16-Mbytes Addressable - Optimized pin multiplexing to reduce latencies on External Memories * 4 SRAM Chip Selects, 1SDRAM Chip Select: - Static Memory Controller on NCS0 - SDRAM Controller or Static Memory Controller on NCS1 - Static Memory Controller on NCS2 - Static Memory Controller on NCS3
28
32058AS-AVR32-03/07
9.8.2
Static Memory Controller * 5 Chip Selects Available * 64-Mbyte Address Space per Chip Select * 8-, 16-bit Data Bus * Word, Halfword, Byte Transfers * Byte Write or Byte Select Lines * Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select * Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select * Programmable Data Float Time per Chip Select * Compliant with LCD Module * External Wait Request * Automatic Switch to Slow Clock Mode * Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes SDRAM Controller * Numerous Configurations Supported
- 2K, 4K, 8K Row Address Memory Parts - SDRAM with Two or Four Internal Banks - SDRAM with 16- or 32-bit Data Path Programming Facilities - Word, Half-word, Byte Access - Automatic Page Break When Memory Boundary Has Been Reached - Multibank Ping-pong Access - Timing Parameters Specified by Software - Automatic Refresh Operation, Refresh Rate is Programmable Energy-saving Capabilities - Self-refresh, Power-down and Deep Power Modes Supported - Supports Mobile SDRAM Devices Error Detection - Refresh Error Interrupt SDRAM Power-up Initialization by Software CAS Latency of 1, 2, 3 Supported Auto Precharge Command Not Used
9.8.3
*
*
* * * * USB Controller
9.8.4
9.8.5
* USB 2.0 Compliant, Full-/Low-Speed (FS/LS) and On-The-Go (OTG), 12 Mbit/s * 7 Pipes/Endpoints * 960 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints * Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint) * Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels * On-Chip Transceivers Including Pull-Ups Serial Peripheral Interface * Supports communication with serial external devices
- Four chip selects with external decoder support allow communication with up to 15 peripherals - Serial memories, such as DataFlash and 3-wire EEPROMs - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors - External co-processors
29
32058AS-AVR32-03/07
* Master or slave serial peripheral bus interface
- 8- to 16-bit programmable data length per chip select - Programmable phase and polarity per chip select - Programmable transfer delays between consecutive transfers and between clock and data per chip select - Programmable delay between consecutive transfers - Selectable mode fault detection * Very fast transfers supported - Transfers with baud rates up to MCK - The chip select line may be left active to speed up transfers on the same device
9.8.6
Two-wire Interface * * * *
High speed up to 400kbit/s Compatibility with standard two-wire serial memory One, two or three bytes for slave address Sequential read/write operations
9.8.7
USART * Programmable Baud Rate Generator * 5- to 9-bit full-duplex synchronous or asynchronous serial communications
- 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode - Parity generation and error detection - Framing error detection, overrun error detection - MSB- or LSB-first - Optional break generation and detection - By 8 or by-16 over-sampling receiver frequency - Hardware handshaking RTS-CTS - Receiver time-out and transmitter timeguard - Optional Multi-drop Mode with address generation and detection - Optional Manchester Encoding RS485 with driver control signal ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards - NACK handling, error counter with repetition and iteration limit IrDA modulation and demodulation - Communication at up to 115.2 Kbps Test Modes - Remote Loopback, Local Loopback, Automatic Echo
* * * * 9.8.8
Serial Synchronous Controller * Provides serial synchronous communication links used in audio and telecom applications (with
CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)
* Contains an independent receiver and transmitter and a common clock divider * Offers a configurable frame sync and data length * Receiver and transmitter can be programmed to start automatically or on detection of different
event on the frame sync signal
* Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal 9.8.9 Timer Counter * Three 16-bit Timer Counter Channels * Wide range of functions including:
- Frequency Measurement
30
32058AS-AVR32-03/07
- Event Counting - Interval Measurement - Pulse Generation - Delay Timing - Pulse Width Modulation - Up/down Capabilities * Each channel is user-configurable and contains: - Three external clock inputs - Five internal clock inputs - Two multi-purpose input/output signals * Two global registers that act on all three TC Channels
9.8.10
Pulse Width Modulation Controller * 7 channels, one 16-bit counter per channel * Common clock generator, providing Thirteen Different Clocks
- A Modulo n counter providing eleven clocks - Two independent Linear Dividers working on modulo n counter outputs * Independent channel programming - Independent Enable Disable Commands - Independent Clock - Independent Period and Duty Cycle, with Double Bufferization - Programmable selection of the output waveform polarity - Programmable center or left aligned output waveform
9.8.11
Ethernet 10/100 MAC * * * * * * * * * * * *
Compatibility with IEEE Standard 802.3 10 and 100 Mbits per second data throughput capability Full- and half-duplex operations MII or RMII interface to the physical layer Register Interface to address, data, status and control registers DMA Interface, operating as a master on the Memory Controller Interrupt generation to signal receive and transmit completion 28-byte transmit and 28-byte receive FIFOs Automatic pad and CRC generation on transmitted frames Address checking logic to recognize four 48-bit addresses Support promiscuous mode where all valid frames are copied to memory Support physical layer management through MDIO interface control of alarm and update time/calendar data
31
32058AS-AVR32-03/07
10. Boot Sequence
This chapter summarizes the boot sequence of the AT32UC3A. The behaviour after power-up is controlled by the Power Manager. For specific details, refer to Section 13. "Power Manager (PM)" on page 47.
10.1
Starting of clocks
After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the power has stabilized throughout the device. Once the power has stabilized, the device will use the internal RC Oscillator as clock source. On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have a divided frequency, all parts of the system recieves a clock with the same frequency as the internal RC Oscillator.
10.2
Fetching of initial instructions
After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset address, which is 0x8000_0000. This address points to the first address in the internal Flash. The code read from the internal Flash is free to configure the system to use for example the PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the clocks to unused peripherals.
32
32058AS-AVR32-03/07
11. Electrical Characteristics
11.1 Absolute Maximum Ratings*
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Operating Temperature.................................... -40C to +85C Storage Temperature .......................................................... ....60C to +150C Voltage on any Pin except RESET_N with respect to Ground ............................-TBDV to VCC+TBDV Voltage on RESET_N with respect to Ground-TBDV to +TBDV Maximum Operating Voltage (VDDCORE, VDDSYS) .... 1.95V Maximum Operating Voltage (VDDIO).............................. 3.6V DC Current per I/O Pin ............................................... TBD mA DC Current VCC and GND Pins.................................. TBD mA
33
32058AS-AVR32-03/07
11.2
DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40C to 85C, unless otherwise specified and are certified for a junction temperature up to TJ = 100C.
Symbol VVDDCOR
E
Parameter DC Supply Core DC Supply Backup DC Supply Oscillator DC Supply PLL DC Supply USB DC Supply Peripheral I/Os Analog reference voltage Input Low-level Voltage Input High-level Voltage Output Low-level Voltage Output High-level Voltage Input Leakage Current Input Capacitance Pull-up Resistance Output Current
Condition
Min.
Typ. 1.65 1.65 1.65 1.65 1.65 3.0 2.6 -0.3 2.0
Max.
Units 1.95 1.95 1.95 1.95 1.95 3.6 3.6 +0.8 VVDDIO+0.3 0.4
VVDDBU VVDDOSC VVDDPLL VVDDUSB VVDDIO VREF VIL VIH VOL VOH ILEAK CIN RPULLUP IO
VVDDIO= VVDDIOM or VVDDIOP Pullup resistors disabled TQFP100 Package
VVDDIO-0.4 TBD TBD TBD TBD
ISC
Static Current
On VVDDCORE = 1.8V, CPU = 0 Hz, CPU is in static mode All inputs driven; RESET_N=1, CPU is in static mode
TA =25C
TBD
TA =85C
TBD
11.3
Power Consumption
The values in Table 11-1 and Table 11-2 on page 35 are measured values of power consumption with operating conditions as follows: *VDDIO = 3.3V *VDDCORE = VDDSYS = 1.8V *TA = 25C *I/Os are inactive
34
32058AS-AVR32-03/07
These figures represent the power consumption measured on the power supplies. Table 11-1.
Mode
Power Consumption for Different Modes(1)
Conditions Core/HSB clock is 66 MHz. PBA clock is 30 MHz. PBB clock is 66 MHz. All peripheral clocks activated. Measured while the processor is executing a recursive Fibonacci algorithm. Consumption Unit
Active
40
mA
Table 11-2.
Peripheral GPIO USART USBB MACB SMC SDRAMC ADC TWI PWM SPI SSC
Power Consumption by Peripheral in Active Mode
Consumption TBD TBD TBD TBD TBD TBD mA TBD TBD TBD TBD TBD TBD Unit
Timer Counter Channels
35
32058AS-AVR32-03/07
11.4
Clock Characteristics
These parameters are given in the following conditions: *VDDCORE = 1.8V *Ambient Temperature = 25C 11.4.1 CPU/HSB Clock Characteristics Core Clock Waveform Parameters
Parameter CPU Clock Frequency CPU Clock Period 15,15 Conditions Min Max 66 Units MHz ns
Table 11-3.
Symbol 1/(tCPCPU) tCPCPU
11.4.2
PBA Clock Characteristics PBA Clock Waveform Parameters
Parameter PBA Clock Frequency PBA Clock Period 30,30 Conditions Min Max 33 Units MHz ns
Table 11-4.
Symbol 1/(tCPPBA) tCPPBA
11.4.3
PBB Clock Characteristics PBB Clock Waveform Parameters
Parameter PBB Clock Frequency PBB Clock Period 15,15 Conditions Min Max 66 Units MHz ns
Table 11-5.
Symbol 1/(tCPPBB) tCPPBB
11.4.4
XIN Clock Characteristics XIN Clock Electrical Characteristics
Parameter XIN Clock Frequency XIN Clock Period XIN Clock High Half-period XIN Clock Low Half-period XIN Input Capacitance XIN Pulldown Resistor
(1) (1)
Table 11-6.
Symbol 1/(tCPXIN) tCPXIN tCHXIN tCLXIN CIN RIN Note:
Conditions
Min 3 20.0 0.4 x tCPXIN 0.4 x tCPXIN
Max 24
Units MHz ns
0.6 x tCPXIN 0.6 x tCPXIN TBD TBD pF k
1. These characteristics apply only when the Main Oscillator is in bypass mode (i.e., when MOSCEN = 0 and OSCBYPASS = 1 in the CKGR_MOR register.)
36
32058AS-AVR32-03/07
11.5
Crystal Oscillator Characteristis
The following characteristics are applicable to the operating temperature range: TA = -40C to 85C and worst case of power supply, unless otherwise specified. 11.5.1 32 KHz Oscillator Characteristics 32 KHz Oscillator Characteristics
Parameter Crystal Oscillator Frequency Duty Cycle tST Note: Startup Time RS = TBD k, CL = TBD pF
(1)
Table 11-7.
Symbol 1/(tCP32KHz)
Conditions
Min
Typ 32 768
Max
Unit Hz
TBD
TBD TBD
% ms
1. RS is the equivalent series resistance, CL is the equivalent load capacitance.
11.5.2
Main Oscillators Characteristics Main Oscillator Characteristics
Parameter Crystal Oscillator Frequency Internal Load Capacitance (CL1 = CL2) Equivalent Load Capacitance Duty Cycle TBD Conditions Min 0.45 TBD TBD TBD TBD TBD Active mode @TBD MHz TBD TBD Typ Max 16 Unit MHz pF pF % ms A A
Table 11-8.
Symbol 1/(tCPMAIN) CL1, CL2 CL
tST IOSC
Startup Time Current Consumption Standby mode @TBD V 1. CS is the shunt capacitance
Notes:
11.5.3
PLL Characteristics Phase Lock Loop Characteristics
Parameter Output Frequency Input Frequency active mode Current Consumption standby mode 1. Startup time depends on PLL RC filter. A calculation tool is provided by Atmel. TBD A Conditions Min 80 TBD Typ Max 240 TBD TBD Unit MHz MHz mA
Table 11-9.
Symbol FOUT FIN IPLL
Note:
37
32058AS-AVR32-03/07
11.6
11.6.1
USB Transceiver Characteristics
Electrical Characteristics
Table 11-10. Electrical Parameters
Symbol Input Levels VIL VIH VDI VCM CIN I REXT Output Levels VOL VOH VCRS Low Level Output High Level Output Output Signal Crossover Voltage Measured with RL of 1.425 k tied to 3.6V Measured with RL of 14.25 k tied to GND Measure conditions described in Figure 11-1 TBD TBD TBD TBD TBD TBD V V V Low Level High Level Differential Input Sensivity Differential Input Common Mode Range Transceiver capacitance Hi-Z State Data Line Leakage Recommended External USB Series Resistor Capacitance to ground on each line 0V < VIN < 3.3V In series with each USB pin with 5% TBD TBD |(D+) - (D-)| TBD TBD TBD TBD TBD TBD TBD V V V V pF A Parameter Conditions Min Typ Max Unit
11.6.2
Switching Characteristics
Table 11-11. In Low Speed
Symbol tFR tFE tFRFM Parameter Transition Rise Time Transition Fall Time Rise/Fall time Matching Conditions CLOAD = 400 pF CLOAD = 400 pF CLOAD = 400 pF Min TBD TBD TBD Typ Max TBD TBD TBD Unit ns ns %
Table 11-12. In Full Speed
Symbol tFR tFE tFRFM Parameter Transition Rise Time Transition Fall Time Rise/Fall time Matching Conditions CLOAD = 50 pF CLOAD = 50 pF Min TBD TBD TBD Typ Max TBD TBD TBD Unit ns ns %
38
32058AS-AVR32-03/07
Figure 11-1. USB Data Signal Rise and Fall Times
11.7 11.8
AC Characteristics - TBD EBI Timings - TBD
39
32058AS-AVR32-03/07
40
32058AS-AVR32-03/07
12. Mechanical Characteristics
12.1
12.1.1
Thermal Considerations
Thermal Data Table 12-1 summarizes the thermal resistance data depending on the package. Table 12-1.
Symbol JA JC JA JC
Thermal Resistance Data
Parameter Junction-to-ambient thermal resistance Junction-to-case thermal resistance Junction-to-ambient thermal resistance Junction-to-case thermal resistance Still Air Condition Still Air Package TQFP100 TQFP100 LQFP144 LQFP144 Typ TBD TBD TBD TBD C/W Unit C/W
12.1.2
Junction Temperature The average chip-junction temperature, TJ, in C can be obtained from the following: 1. 2. T J = T A + ( P D x JA )
T J = T A + ( P D x ( HEATSINK + JC ) )
where: * JA = package thermal resistance, Junction-to-ambient (C/W), provided in Table 12-1 on page 41. * JC = package thermal resistance, Junction-to-case thermal resistance (C/W), provided in Table 12-1 on page 41. * HEAT SINK = cooling device thermal resistance (C/W), provided in the device datasheet. * PD = device power consumption (W) estimated from data provided in the section "Power Consumption" on page 34. * TA = ambient temperature (C). From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature TJ in C.
41
32058AS-AVR32-03/07
12.2
Package Drawings
Figure 12-1. TQFP-100 package drawing
Table 12-2.
TBD
Device and Package Maximum Weight
mg
Table 12-3.
Package Characteristics
TBD
Moisture Sensitivity Level
Table 12-4.
Package Reference
MS-026 E3
JEDEC Drawing Reference JESD97 Classification
42
32058AS-AVR32-03/07
Figure 12-2. LQFP-144 package drawing
Table 12-5.
TBD
Device and Package Maximum Weight
mg
Table 12-6.
Package Characteristics
TBD
Moisture Sensitivity Level
Table 12-7.
Package Reference
MS-026 E3
JEDEC Drawing Reference JESD97 Classification
43
32058AS-AVR32-03/07
12.3
Soldering Profile
Table 12-8 gives the recommended soldering profile from J-STD-20. Table 12-8. Soldering Profile
Green Package TBD TBD TBD TBD TBD TBD TBD
Profile Feature Average Ramp-up Rate (217C to Peak) Preheat Temperature 175C 25C Temperature Maintained Above 217C Time within 5C of Actual Peak Temperature Peak Temperature Range Ramp-down Rate Time 25C to Peak Temperature Note:
It is recommended to apply a soldering temperature higher than 250C.
A maximum of three reflow passes is allowed per component.
44
32058AS-AVR32-03/07
13. Ordering Information
Temperature Operating Range Industrial (-40C to 85C) Industrial (-40C to 85C) Industrial (-40C to 85C) Industrial (-40C to 85C) Industrial (-40C to 85C) Industrial (-40C to 85C)
Device AT32UC3A0512 AT32UC3A1512 AT32UC3A0256 AT32UC3A1256 AT32UC3A0128 AT32UC3A1128
Ordering Code AT32UC3A0512-ALUT AT32UC3A1512-AUT AT32UC3A0256-ALUT AT32UC3A1256-AUT AT32UC3A0128-ALUT AT32UC3A1128-AUT
Package 144 lead LQFP 100 lead TQFP 144 lead LQFP 100 lead TQFP 100 lead TQFP 100 lead TQFP
Conditioning Tray Tray Tray Tray Tray Tray
14. Errata
14.1 Rev. E
1. SPI FDIV option does not work Selecting clock signal using FDIV = 1 does not work as specified. Fix/Workaround Do not set FDIV = 1. 2. PWM counter restarts at 0x0001 The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle. Fix/Workaround - The first period is 0x0000, 0x0001, ..., period - Consecutive periods are 0x0001, 0x0002, ..., period 3. PWM channel interrupt enabling triggers an interrupt When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled. Fix/Workaround When using center aligned mode, enable the channel and read the status before channel interrupt is enabled. 4. PWM update period to a 0 value does not work It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD). Fix/Workaround Do not update the PWM_CUPD register with a value equal to 0. 5. PWM channel status may be wrong if disabled before a period has elapsed Before a PWM period has elapsed, the read channel status may be wrong. The CHIDx-bit for a PWM channel in the PWM Enable Register will read '1' for one full PWM period even if the channel was disabled before the period elapsed. It will then read '0' as expected. Fix/Workaround 45
32058AS-AVR32-03/07
Reading the PWM channel status of a disabled channel is only correct after a PWM period has elapsed. 6. SSC does not trigger RF when data is low The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or RCMR respectively. Fix/Workaround Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the PIO. 7. SSC Data is not sent unless clock is set as output The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or RCMR respectively. Fix/Workaround Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the PIO. 8. USB No end of host reset signaled upon disconnection In host mode, in case of an unexpected device disconnection whereas a usb reset is being sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at the end of the reset. Fix/Workaround A software workaround consists in testing (by polling or interrupt) the disconnection (UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid being stuck. 9. Incorrect Processor ID The processor ID reads 0x01 and not 0x02 as it should. Fix/Workaround None. 10. Bus error should be masked in Debug mode If a bus error occurs during debug mode, the processor will not respond to debug commands through the DINST register. Fix/Workaround A reset of the device will make the CPU respond to debug commands again. 11. Code execution from external SDRAM does not work Code execution from SDRAM does not work. Fix/Workaround Do not run code from SDRAM. 12. Read Modify Write (RMW) instructions on data outside the internal RAM does not work. Read Modify Write (RMW) instructions on data outside the internal RAM does not work. Fix/Workaround Do not perform RMW instructions on data outside the internal RAM.
46
32058AS-AVR32-03/07
13. USART Manchester Encoder Not Working Manchester encoding/decoding is not working. Fix/Workaround Do not use manchester encoding. 14. USART RXBREAK problem when no timeguard In asynchronous mode the RXBREAK flag is not correctly handled when the timeguard is 0 and the break character is located just after the stop bit. Fix/Workaround If the NBSTOP is 1, timeguard should be different from 0. 15 USART Handshaking: 2 characters sent / CTS rises when TX If CTS switches from 0 to 1 during the TX of a character, if the Holding register is not empty, the TXHOLDING is also transmitted. Fix/Workaround None. 16. USART PDC and TIMEGUARD not supported in MANCHESTER Manchester encoding/decoding is not working. Fix/Workaround Do not use manchester encoding. 17. Voltage regulator input and output is connected to VDDIO and VDDCORE inside the device The voltage regulator input and output is connected to VDDIO and VDDCORE respectively inside the device. Fix/Workaround Do not supply VDDCORE externally, as this supply will work in paralell with the regulator. 18. ADC possible miss on DRDY when disabling a channel The ADC does not work properly when more than one channel is enabled. Fix/Workaround Do not use the ADC with more than one channel enabled at a time. 19. ADC OVRE flag sometimes not reset on Status Register read The OVRE flag does not clear properly if read simultaneously to an end of conversion. Fix/Workaround None. 20. CRC calculation of a locked device will calculate CRC for 512 kB of flash memory, even though the part has less flash. Fix/Workaround The flash address space is wrapping, so it is possible to use the CRC value by calculating CRC of the flash content concatenated with itself N times. Where N is 512 kB/flash size. 21. SDRAM SDCKE rise at the same time as SDCK while exiting self-refresh mode
47
32058AS-AVR32-03/07
SDCKE rise at the same time as SDCK while exiting self-refresh mode. Fix/Workaround None. 22. PCx pins go low in stop mode In sleep mode stop all PCx pins will be controlled by GPIO module instead of oscillators. This can cause drive contention on the XINx in worst case. Fix/Workaround Before entering stop mode set all PCx pins to input and GPIO controlled. 23. Need two NOPs instruction after instructions masking interrupts The instructions following in the pipeline the instruction masking the interrupt through SR may behave abnormally. Fix/Workaround Place two NOPs instructions after each SSRF or MTSR instruction setting IxM or GM in SR.
48
32058AS-AVR32-03/07
15. Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.
15.1
Rev. A 03/07
1.
Initial revision.
49
32058AS-AVR32-03/07
1 2 3
Description ............................................................................................... 2 Configuration Summary .......................................................................... 3 Blockdiagram ........................................................................................... 4
3.1Processor and architecture .......................................................................................5
4 5 6
Signals Description ................................................................................. 7 Package and Pinout ............................................................................... 12 Power Considerations ........................................................................... 15
6.1Power Supplies .......................................................................................................15 6.2Voltage Regulator ....................................................................................................15
7
I/O Line Considerations ......................................................................... 16
7.1JTAG pins ................................................................................................................16 7.2RESET_N pin ..........................................................................................................16 7.3TWI pins ..................................................................................................................16 7.4GPIO pins ................................................................................................................16
8
Memories ................................................................................................ 17
8.1Embedded Memories ..............................................................................................17 8.2Physical Memory Map .............................................................................................17
9
Peripherals ............................................................................................. 19
9.1Peripheral address map ..........................................................................................19 9.2Interrupt Request Signal Map ..................................................................................20 9.3Clock Connections ..................................................................................................23 9.4Nexus OCD AUX port connections .........................................................................23 9.5DMA handshake signals ..........................................................................................24 9.6Peripheral Multiplexing on I/O lines .........................................................................25 9.7Oscillator Pinout ......................................................................................................28 9.8Peripheral overview .................................................................................................28
10 Boot Sequence ....................................................................................... 32
10.1Starting of clocks ...................................................................................................32 10.2Fetching of initial instructions ................................................................................32
11 Electrical Characteristics ...................................................................... 33
11.1Absolute Maximum Ratings* .................................................................................33 11.2DC Characteristics ................................................................................................34 11.3Power Consumption ..............................................................................................34 I
32058AS-AVR32-03/07
11.4Clock Characteristics .............................................................................................36 11.5Crystal Oscillator Characteristis ............................................................................37 11.6USB Transceiver Characteristics ...........................................................................38 11.7AC Characteristics - TBD ......................................................................................39 11.8EBI Timings - TBD .................................................................................................39
12 Mechanical Characteristics ................................................................... 41
12.1Thermal Considerations ........................................................................................41 12.2Package Drawings ................................................................................................42 12.3Soldering Profile ....................................................................................................44
13 Ordering Information ............................................................................. 45 14 Errata ....................................................................................................... 45
14.1Rev. E ....................................................................................................................45
15 Datasheet Revision History .................................................................. 49
15.1Rev. A 03/07 ..........................................................................................................49
Headquarters
Atmel Corporation
2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600
Operations
Memory
2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2 Postfach 3535 74025 Heilbronn Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759
Microcontrollers
International
Atmel Asia
Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369
2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3 France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60
Biometrics
Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex France Tel: (33) 4-76-58-47-50 Fax: (33) 4-76-58-47-60
Atmel Europe
Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11
ASIC/ASSP/Smart Cards
Zone Industrielle 13106 Rousset Cedex France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743
Atmel Japan
9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
(c) 2007 Atmel Corporation. All rights reserved. Atmel(R), logo and combinations thereof, Everywhere You Are (R), AVR(R) and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
32058AS-AVR32-03/07


▲Up To Search▲   

 
Price & Availability of AT32UC3A0128-ALUT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X